lmer_linear1<-lmer(response~age*time+(1|subject), data =my_data)summary(lmer_linear1)
Linear mixed model fit by REML ['lmerMod']
Formula: response ~ age * time + (1 | subject)
Data: my_data
REML criterion at convergence: 103.7
Scaled residuals:
Min 1Q Median 3Q Max
-2.3463 -0.6396 -0.1627 0.6310 2.1673
Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) 0.0000 0.0000
Residual 0.3641 0.6034
Number of obs: 54, groups: subject, 18
Fixed effects:
Estimate Std. Error t value
(Intercept) 2.7791 0.3072 9.046
ageYoung 1.0341 0.4345 2.380
time 0.2731 0.1422 1.920
ageYoung:time -0.4568 0.2011 -2.271
Correlation of Fixed Effects:
(Intr) ageYng time
ageYoung -0.707
time -0.926 0.655
ageYoung:tm 0.655 -0.926 -0.707
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
Linear mixed models
Add random slopes
lmer_linear2<-lmer(response~age*time+(time|subject), data =my_data)summary(lmer_linear2)
Linear mixed model fit by REML ['lmerMod']
Formula: response ~ age * time + (time | subject)
Data: my_data
REML criterion at convergence: 103.2
Scaled residuals:
Min 1Q Median 3Q Max
-2.1795 -0.6739 -0.0800 0.6680 1.9714
Random effects:
Groups Name Variance Std.Dev. Corr
subject (Intercept) 0.23732 0.4872
time 0.05669 0.2381 -1.00
Residual 0.32768 0.5724
Number of obs: 54, groups: subject, 18
Fixed effects:
Estimate Std. Error t value
(Intercept) 2.7791 0.3337 8.329
ageYoung 1.0341 0.4719 2.192
time 0.2731 0.1565 1.744
ageYoung:time -0.4568 0.2214 -2.064
Correlation of Fixed Effects:
(Intr) ageYng time
ageYoung -0.707
time -0.944 0.667
ageYoung:tm 0.667 -0.944 -0.707
Mixed model tests
To get p-values, use lmerTest package
summary(lmerTest::lmer(response~age*time+(1|subject), data =my_data))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: response ~ age * time + (1 | subject)
Data: my_data
REML criterion at convergence: 103.7
Scaled residuals:
Min 1Q Median 3Q Max
-2.3463 -0.6396 -0.1627 0.6310 2.1673
Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) 0.0000 0.0000
Residual 0.3641 0.6034
Number of obs: 54, groups: subject, 18
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 2.7791 0.3072 50.0000 9.046 4.2e-12 ***
ageYoung 1.0341 0.4345 50.0000 2.380 0.0212 *
time 0.2731 0.1422 50.0000 1.920 0.0606 .
ageYoung:time -0.4568 0.2011 50.0000 -2.271 0.0275 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr) ageYng time
ageYoung -0.707
time -0.926 0.655
ageYoung:tm 0.655 -0.926 -0.707
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
Generalized linear models
glm_poisson<-glm(rt~gender, data =my_data, family =poisson)# change family for generalized linear modelsummary(glm_poisson)
Call:
glm(formula = rt ~ gender, family = poisson, data = my_data)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 7.604784 0.005260 1445.711 <2e-16 ***
genderMale -0.002493 0.007444 -0.335 0.738
genderNonbinary 0.008815 0.007423 1.188 0.235
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 333.68 on 53 degrees of freedom
Residual deviance: 331.12 on 51 degrees of freedom
AIC: 847.06
Number of Fisher Scoring iterations: 3
Logistic regression
summary(glm(binary~age, data =my_data, family =binomial))
Call:
glm(formula = binary ~ age, family = binomial, data = my_data)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.07411 0.38516 0.192 0.847
ageYoung -0.44880 0.54933 -0.817 0.414
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 74.563 on 53 degrees of freedom
Residual deviance: 73.892 on 52 degrees of freedom
AIC: 77.892
Number of Fisher Scoring iterations: 4
Generalized linear mixed models
glmer_binomial<-glmer(binary~age*time+(1|subject), data =my_data, family =binomial)# add random effectssummary(glmer_binomial)
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )
Formula: binary ~ age * time + (1 | subject)
Data: my_data
AIC BIC logLik -2*log(L) df.resid
82.7 92.7 -36.4 72.7 49
Scaled residuals:
Min 1Q Median 3Q Max
-1.1608 -0.9283 -0.6514 0.9626 1.5351
Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) 0 0
Number of obs: 54, groups: subject, 18
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.5216 1.0275 0.508 0.612
ageYoung -1.8477 1.4985 -1.233 0.218
time -0.2235 0.4747 -0.471 0.638
ageYoung:time 0.6924 0.6847 1.011 0.312
Correlation of Fixed Effects:
(Intr) ageYng time
ageYoung -0.686
time -0.926 0.635
ageYoung:tm 0.642 -0.929 -0.693
optimizer (Nelder_Mead) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')
Bayes factor analysis
--------------
[1] age : 0.3378884 ±0.01%
Against denominator:
Intercept only
---
Bayes factor type: BFlinearModel, JZS
Repeated measures ANOVA
my_data<-mutate(my_data, time =as.factor(time))anovaBF(response~age*time, data =my_data, whichRandom ="subject")
Bayes factor analysis
--------------
[1] age : 0.3378884 ±0.01%
[2] time : 0.3325388 ±0.01%
[3] age + time : 0.1115577 ±1.42%
[4] age + time + age:time : 0.1466879 ±1.37%
Against denominator:
Intercept only
---
Bayes factor type: BFlinearModel, JZS