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Abstract

Standard models of intertemporal choice assume that individuals discount future payoffs

by integrating reward amounts and time delays to generate a discounted value. Alternative

models propose that, rather than integrate across them, individuals compare within

attributes (amounts and delays) to determine if differences in one attribute outweigh

differences in another attribute. For instance, Leland (2002) and Rubinstein (2003) propose

models that 1) compare the two reward amounts to determine whether they are similar, 2)

compare the similarity of the two time delays, and then 3) make a decision based on these

similarity judgments. Here, I tested discounting models against attribute-based models that

use similarity judgments to make choices. I collected intertemporal choices and similarity

judgments for the reward amounts and time delays from participants in three experiments.

All experiments tested the ability of discounting and similarity models to predict

intertemporal choices. Model generalization analyses showed that the best predicting

models started with similarity judgments and then, if similarity failed to make a prediction,

resorted to discounting models. Similarity judgments also matched intertemporal choice

data demonstrating both the magnitude and sign effects, thereby accounting for behavioral

data that contradict many discounting models. These results highlight the possibility that

attribute-based models such as the similarity models provide alternatives to discounting

that may offer insights into the process of making intertemporal choices.
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Intertemporal similarity: Discounting as a last resort

Introduction

Which would you prefer, a piece of cake now or a slimmer waist next week? How

about $100 today or $105 in one year? Intertemporal choices (Frederick, Loewenstein, &

O’Donoghue, 2002; Read, 2004; Stevens, 2010) such as these underlie the most pressing

decisions we have to make, from addressing global climate change (Stern, 2008) and the

war on obesity (Komlos, Smith, & Bogin, 2004) to consuming alcohol (Rachlin, 2000) and

investing in retirement plans (Laibson, Repetto, & Tobacman, 1998). In all of these cases,

we must make decisions about future outcomes. Despite extensive interest in this topic, a

critical gap remains in our knowledge of how we make intertemporal choices.

For the last 75 years, the standard models of intertemporal choice assume that we

temporally discount (i.e., subjectively devalue) the future when given the choice between a

smaller reward available sooner and a larger reward available later. An alternative

approach, however, suggests other means by which we can make these decisions. Rather

than integrate attributes to generate a discounted value for each option, these models

compare attributes (reward amounts and time delays) to determine if differences in one

attribute outweigh differences in another attribute (Leland, 2002; Rubinstein, 2003;

Scholten & Read, 2010; Vlaev, Chater, Stewart, & Brown, 2011). Here, I explore whether

attribute-wise decision making can provide a viable alternative or supplement to

discounting.

Temporal Discounting

The temporal discounting approach typically offers an ‘as-if’ model of decision

making (Berg & Gigerenzer, 2010; Kacelnik, 1997) rather than an explicit model of the

process of decision making (but see Kable & Glimcher, 2007). Discounting models usually

assume that individuals generate a subjective value for rewards discounted by the time

delay to receiving the rewards and choose the option with the highest discounted value. For
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instance, in the previous monetary example, people often treat the $105 in one year as

worth less than $105 today because they must wait for it. So, while the present value of the

immediate option remains $100, the present value of the delayed option decreases.

Discounting models can make functional sense if a future benefit is uncertain. Typically, the

farther in the future a benefit occurs, the lower the probability of it actually being realized.

Therefore, future rewards should have a lower expected value. The form of these “hazard

functions” of environmental uncertainty should map onto the discounted value functions

(Kacelnik, 1997; Sozou, 1998; Stephens, 2002). Though dozens of discounting models

exist (Doyle, 2013), I focus on a handful of the most commonly discussed models (Table 1).

[Table 1 about here]

The standard economic model of exponential discounting (Samuelson, 1937) assumes

that discounted values should correspond to compound interest. Individuals should choose

based on which option offers the best outcome should they borrow or lend money at the

market interest rate (Read, 2004). Exponential discounting predicts that the present value

of an option V decays at a constant rate: V = Ae−δt, where A represents reward amount, t

represents time delay to receiving the reward, and δ represents a discount parameter. The

discount parameter δ is a function of the discount rate ρ (δ = −ln(1− ρ)), which describes

how quickly value decreases over time. We would expect exponential discounting when the

probability of losing a future reward is constant per unit time.

Though mathematically elegant and economically intuitive, much of the experimental

evidence in humans and other animals contradicts predictions of exponential discounting

(reviewed in Frederick et al., 2002). Psychologists developed the alternative notion of

hyperbolic discounting (Ainslie, 1975; Chung & Herrnstein, 1967; Herrnstein, 1981;

Rachlin, 1970), and Mazur (1987) formalized the current standard hyperbolic model:

V = A
1+kt , where k is a discounting parameter that scales the steepness of discounting or

the degree of preference for immediate rewards. Whereas exponential discounting

corresponds to compound interest in economic terms, hyperbolic discounting corresponds
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to simple interest (Read, 2004). This model successfully fits people’s discounting patterns,

typically better than exponential models (Frederick et al., 2002; Rachlin, Raineri, &

Cross, 1991) because it includes a discount rate that decreases with delay rather than

remaining constant. Studies differ in how they compare models, but typically they fit

various models using non-linear least-squares regression and compare R2 values (Kirby &

Maraković, 1995; McKerchar et al., 2009). Hyperbolic discounting consistently shows

higher R2 values, usually by 1-4 percentages points. Hyperbolic discounting also allows for

time inconsistency, in which individuals plan to exhibit self-control when it is in the future,

but as temptation nears, they often choose impulsively. A snooze bar on alarm clocks

provide an example of this. In the evening, we set the alarm to wake up early to get a fresh

start on the day. But once the alarm goes off, we often hit the snooze bar, succumbing to

the temptation of more sleep. Hyperbolic discounting is also related to rate-based models

of choice developed in the behaviorist tradition of psychology (Chung & Herrnstein, 1967;

Herrnstein, 1981) and the foraging theory tradition of evolutionary biology (Kacelnik,

1997; Stephens & Krebs, 1986). If an individual maximizes his/her intake rate (rewards

per unit time), this will result in a hyperbolic form (though not necessarily Mazur’s

specification). Mazur’s hyperbolic discounting model was originally designed to describe

pigeon data with repeated intertemporal choices, an ideal situation for maximizing rate.

Because hyperbolic discounting can account for these phenomena, it has historically been

the standard model of intertemporal choice in psychology.

The Mazur hyperbolic discounting model, however, tends to “overpredict subjective

value at shorter delays, while underpredicting it at longer delays” (McKerchar et al.,

2009). Researchers have modified the Mazur model by incorporating more parameters to

better fit the data. Rachlin (2006) added an exponent σ to the time delay to better capture

sensitivity to delay: V = A
1+ktσ . This additional parameter improves fit by allowing a more

flexible relationship between value and delay. Kirby (1997) included a parameterized

amount in the denominator to capture how the discount rate is sensitive to the reward
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amount: V = A
1+kAµt , where µ represents the sensitivity of discount rate to amount.

Loewenstein and Prelec (1992) provide another modification of the hyperbolic discounting

model that includes Mazur’s hyperbolic model and the exponential model as special cases:

V = A
(1+αt)β/α .

Despite its success in quantitatively fitting functional forms of data, a number of

qualitative empirical findings contradict Mazur’s hyperbolic discounting model (reviewed in

Frederick et al., 2002; Read, 2004). Here I focus on two such “anomalies”: the magnitude

effect and the sign effect. The magnitude effect occurs when participants’ purported rate of

discounting decreases as the absolute magnitude of the rewards increases (Green, Myerson,

& McFadden, 1997; Thaler, 1981). Thus, people choose the smaller, sooner option more

when facing $1 today vs. $5 in one year compared to when facing $1,000 today vs. $5,000

in one year, even though the ratio of rewards is the same. This constant reward ratio is

important because hyperbolic discounting (along with exponential discounting) predicts

that an individual preferring $1 today over $5 in year will always choose the smaller, sooner

reward if the delays are fixed and the reward ratio is constant. The sign effect occurs when

the discounting rate changes depending on whether the intertemporal choices involve

positive outcomes (gains) or negative outcomes (losses). In particular, participants tend to

discount gains more than losses (Estle, Green, Myerson, & Holt, 2006; Hardisty, Appelt,

& Weber, 2013; Thaler, 1981), though some individuals reverse their preferences for

losses, opting to advance rather than delay them (Yates & Watts, 1975). Hyperbolic

discounting models with more parameters and nonlinear utility functions (e.g., Kirby,

1997; Loewenstein & Prelec, 1992) better fit the data and can allow for behavioral

anomalies such as the magnitude and sign effects. Nevertheless, Mazur’s hyperbolic

discounting model continues to dominate the field of intertemporal choice.

The arithmetic discounting model1 provides an alternative to hyperbolic discounting

1Killeen (2009) has developed a more elaborate version of this model (called the additive discounting

model) with nonlinear utility and time perception functions.

The tradeoff model (Scholten & Read, 2010) is an attribute-based model related to the arithmetic
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that converts the time delay into “disutility” and subtracts it from the reward amount

(Doyle, 2013): V = A− λt, where λ represents the discounting parameter. Doyle and

Chen (2012) suggest that arithmetic discounting can outperform hyperbolic and

exponential discounting.

Attribute-based Models

An alternative to discounting exists. The attribute-based approach (Payne, Bettman,

& Johnson, 1993; Scholten & Read, 2010; Vlaev et al., 2011) takes a completely

different view than the discounting approach. Instead of integrating the reward amount

and time delay attributes to create a discounted value for each option, attribute-based

models propose that individuals compare the attributes across options. Each of the models

uses a different technique, but the general idea is to compare the values within an attribute

(small amount compared to large amount and short delay compared to long delay) and

then evaluate whether one attribute drives choice. For instance, these models would

compare receiving $100 vs. $105 and waiting until today vs. one year and then assess

whether the reward amount or time delay comparison (nor neither) determines choice.

Attribute-based models have been developed for two primary reasons. First, the

discounting models fail to account for a number of key empirical findings in the literature

(Leland, 2002; Rubinstein, 2003; Scholten & Read, 2010). Second, they do not offer

accounts of the psychological process of decision making. When Rubinstein (2003)

proposed an attribute-based model for intertemporal choice, he suggested that the existing

discounting accounts of choice did not match the intuition one has about the psychological

process experienced in making these decisions. The advantage of the attribute-based models

discounting model. In a simplified version of the model, the tradeoff between the attributes is given as

κ[w(tl) − w(ts)] = v(Al) − v(As), where κ is a comparison parameter, w is a time-weighting function, and

v is a value-weighting function. When w and v are concave (due to diminishing sensitivity), the model falls

between the arithmetic discounting model and an attribute-based model. When w and v are linear, however,

this model reduces to the arithmetic discounting model used here.
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is that they offer a window into the process of decision making by making predictions

about the order of obtaining and using information about the attributes. Further,

Rubinstein asserts that “the decision maker uses a procedure that aims at simplifying the

choice by applying similarity relations” (p. 1210). Thus, attribute-based accounts may offer

cognitively simpler processes for making intertemporal choices by avoiding integrating

across attributes and focusing on potentially simpler comparison within them.

Leland (2002) and Rubinstein (2003) developed an alternative approach that

examined the influence of similarity judgments on intertemporal choices. Here, similarity

refers to the psychological distance between receiving the two reward amounts or between

waiting the two time delays. The similarity models use the perceived similarity of the

reward amounts and of the time delays to make a decision. The similarity model can be

described by a decision tree:

Amounts similar?

Delay similar?

Random or

other criterion

Smaller sooner

Delay similar?

Larger later Random or

other criterion

Yes

Yes No

No

Yes No

Similarity domain

If only one attribute is judged as similar, then ignore that attribute and decide based on

the other. In the previous example, one might judge receiving $100 and $105 to be quite

similar, whereas waiting 0 days vs. 1 year as not similar. Using the similarity model, one

would ignore the amount attribute since they are similar and choose based on the time

delay, therefore opting for the sooner reward of $100 today. This can generate similar

behavior to the discounting models but via very different decision processes.

In situations in which either amounts or delays are judged as similar (inner two

terminal branches of decision tree), I label this the similarity domain because the model

makes a deterministic prediction in these circumstances. Two versions of this model exist
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that differ in their behavior outside of the similarity domain, that is, when both attributes

are either similar or dissimilar (outer two terminal branches of decision tree). In the Leland

(2002) version, the model predicts choosing randomly when outside the similarity domain.

The Rubinstein (2003) version asserts that another criterion must be used when outside of

the similarity domain. Rubinstein, however, did not specify any other possible criteria, so

this form of the model makes no predictions in these circumstances. Here, I add the

discounting models as the second criterion for cases outside of the similarity domain. Thus,

I present seven similarity models: Leland’s version with random choice outside of the

similarity domain and six separate versions with the other models implemented outside of

the similarity domain.

Present Study

The aim of the present study was to formally test discounting and similarity models

of intertemporal choice. Thus far, the only data collected on the similarity model are

Rubinstein’s (2003) critical tests. These critical tests, however, did not directly measure

similarity judgments.

This study offers competitive model selection tests of the similarity model using

similarity judgments from participants. To test these models, I collected choice data for

intertemporal choices. Unlike previous intertemporal choice studies, I provide

generalization tests of predictive accuracy to offer a more robust test of models.

Generalization tests fit one set of data and predict responses on a different set of data

(Busemeyer & Wang, 2000; Marewski & Olsson, 2009). In addition, these experiments

test whether the similarity model can account for two key anomalies associated with

hyperbolic discounting: the magnitude effect and the sign effect. The combination of model

generalization tests and anomaly tests provide converging methods to explore

attribute-based models of intertemporal choice.
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Experiment 1: Testing Similarity and the Magnitude Effect

The goals of the first experiment were to (1) compare the predictive accuracy of

discounting models (exponential, hyperbolic, and arithmetic) to similarity-based models

and (2) explore whether similarity-based models can account for the magnitude effect in

intertemporal choice. To robustly compare the models, I first fit them to one set of data

and then used generalization techniques to test the predictive accuracy of the models on a

different set of data. To test the influence of similarity judgments on choice, I collected

dichotomous similarity ratings from participants for pairs of reward amounts and pairs of

time delays.

I also test the magnitude effect—the fact that the discount rate changes with the

magnitude of the reward (Green et al., 1997; Thaler, 1981). The magnitude effect is not

predicted by exponential discounting or Mazur’s hyperbolic discounting. Here, I tested the

magnitude effect by offering participants a series of questions in which the short delay and

long delay remained constant, but the small and large amounts varied (ranging from $2-18),

though their ratio remained constant. The hyperbolic model predicts the same choice across

these questions because the amount ratio is constant. The similarity model, in contrast,

predicts different choices if similarity changes with the magnitude of the reward amounts.

Methods

Participants. In May 2009, I tested 64 participants (29 males and 35 females) with

a mean±SD age of 25.8±3.0 (range 19-33) years, recruited from German universities via

the Max Planck Institute for Human Development participant pool. They received e8 for

participating in the experiment and earned an additional e7.30±2.44 (range e1-15), based

on their choices in the experiment.

Materials and procedure.

Procedural overview. All materials were prepared in German. The experiment

included three phases. The first two phases (binary choice phase and staircase phase)
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offered participants intertemporal choice questions between pairs of options. In the final

phase (similarity judgment phase), participants rated the similarity of the reward amounts

and time delays used in the previous intertemporal choice phases. Questions were

presented using HTML forms with response buttons and are available in the

Supplementary Materials.

Before beginning the first phase, the computer program explained to participants

that their choices determined their payoffs: The computer program would randomly select

one of the intertemporal choice questions, and the participant would receive the option that

they chose via bank transfer. Thus, the participants were incentivized to make choices

reflecting their true preferences because they would actually receive the amount they chose

after the appropriate time delay. At the end of the experiment, participants were shown the

randomly selected intertemporal choice question and their choice for that question. They

were given the option of accepting this outcome, or, if the outcome was delayed, they could

opt for 85% of the amount in cash immediately. Participants did not know that they would

receive this option while making the prior intertemporal choices or similarity judgments.

Binary choice phase. The first phase consisted of a series of 87 questions offering

binary choices between options with different reward amounts and time delays, ranging

from e1-20 and 0-85 days (Table S1). All participants first experienced the same two

practice questions before moving to the test questions, the order of which was randomized

across participants.

A subset of questions was designed to test the magnitude effect (Table S2). These

questions had fixed short delays and long delays and a fixed ratio but different magnitudes

of small amounts and large amounts. With these questions, a hyperbolic discounter would

make the same choice across questions, assuming a consistent discount parameter k. I

offered three blocks (with amount ratios of 0.50, 0.67, and 0.80) of six questions each.

Within each block, three questions involved an immediate short time delay, and three

questions involved a delayed short time delay. For these questions, the ratio of amounts,
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ratio of delays, and difference between delays remained constant, with only the difference

between amounts (and therefore amount magnitude) varying across questions.

Staircase phase. In the second phase, blocks of intertemporal choice questions

were presented using the staircase method. Staircase questions were presented in 20 blocks

(plus 1 practice block) of 10 questions. For 17 of these blocks, the small amount varied

incrementally from e1-10, while the large amount, short delay, and long delay remained

constant. For example, we asked participants, “Which option would you prefer? e1 in 1

day or e10 in 6 days”, then “Which option would you prefer? e2 in 1 day or e10 in 6

days”. This continued until they reached “Which option would you prefer? e10 in 1 day or

e10 in 6 days”. For 3 of the blocks the short delay varied incrementally from 9 to 0 days,

while the small amount, large amount, and long delays remained constant. Order of

presentation (ascending or descending amounts or times) influences discounting parameter

estimates (Hardisty et al., 2013; Robles & Vargas, 2007) suggesting that adjusting

amounts and adjusting delays could yield different parameter estimates, as well. Therefore,

to reduce potential variance in the parameter estimation, the adjusting-delay data were not

analyzed here; I only included the adjusting-amount data. Participants began this phase of

the experiment with one block of 10 practice questions. The order of trials within a block

always increased from e1-10, but the order of blocks was randomized across participants.

Mean choice percentages are presented in Figure S1.

Similarity judgment phase. In the final phase, participants made 60

dichotomous similar/different distinctions between reward amounts (23 questions) and

between time delays (37 questions): “Indicate whether you would rate the above amounts

[delays] as similar or different”. All amount and delay pairs were drawn from but did not

include all binary choice and staircase questions from the first two phases.
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Data analysis. I processed and analyzed the data using R statistical software2

version 3.1.1 (R Development Core Team, 2014). Data and R code3 are available in the

Supplementary Materials and will be posted on the IQSS Dataverse Network data

repository (http://thedata.harvard.edu/dvn/).

I used individual participants as the unit of analysis, so all measures of choice and

similarity are calculated over the mean values of each participant. When comparing

measures within a participant, I used within-subjects 95% confidence intervals (Cousineau,

2005; Morey, 2008) to remove between-participant effects.

Model selection. I first fit the exponential discounting, hyperbolic discounting,

and arithmetic discounting models to each participant’s staircase data using maximum

likelihood estimation with an inverse logit function and a binomial distribution (median

parameter estimates available in Table S3). I removed from the analysis participants whose

maximum likelihood estimates failed to converge (typically due to nearly exclusive choice of

the larger, later option), yielding data from 51 participants. To report fit for these models,

I include AICc values (Burnham & Anderson, 2010) computed both over all data and

separately for each participant. The similarity models had no parameters to fit for this

analysis.

Next, I used the fitted parameters from each model to predict responses for binary

choice questions. I generated a prediction for each binary choice question, using

participant-specific parameters estimated from the staircase data. For each participant and

each model, I calculated predictive accuracy as the percentage of questions for which the

2In addition to the core R program, I used the bbmle (Bolker & R Development Core Team, 2012),

car (Fox & Weisberg, 2011), epicalc (Chongsuvivatwong, 2012), foreach (Revolution Analytics & Weston,

2014), Hmisc (Harrell, with contributions from Charles Dupont, & many others, 2014), lattice (Sarkar,

2008), latticeExtra (Sarkar & Andrews, 2013), plyr (Wickham, 2011), xtable (Dahl, 2013), and zoo (Zeileis

& Grothendieck, 2005) packages.
3The original LATEX document, with Sweave-embedded R code (Leisch, 2002) to allow reproduction of

analyses (de Leeuw, 2001), is available from the author.
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model correctly predicted the participant’s choice.

I used the dichotomous similarity ratings as the input into the similarity model. The

60 similarity judgments did not cover all attribute pairs, allowing the similarity models to

make predictions for 46 of the 87 questions (53%). I restricted the model selection analysis

to this subset of questions to allow a similar comparison across all models. I tested seven

forms of the similarity model. Leland’s (2002) version of the model chose randomly when

both attributes were judged as similar or dissimilar (outside of the similarity domain).

Predictive accuracy for a participant was calculated as the mean predictive accuracy of the

deterministic predictions and of the random predictions, weighted by the number of

questions in each of those categories4. The remaining six similarity models employed the

discounting models when outside the similarity domain. Thus, they were two-stage models

with a similarity judgment stage and, if similarity did not make a deterministic prediction,

a second stage used another model. The mean percentage of questions in the similarity

domain for participants was 62% (median: 64%), ranging from 4-100%.

Results and Discussion

Model selection. Table 2 shows the mean AICc values (lower is better fit) and

predictive accuracy (higher is better performance) for all models tested in Experiment 1.

Rachlin’s two-parameter hyperbolic discounting model best fit the aggregated data, and

arithmetic discounting best fit the individual data. Yet, when predicting new data, all

4Predictive accuracy was measured by assessing whether data matched the deterministic predictions of

the models. For random predictions, the expected predicted choice was 50% since individuals were randomly

choosing between two options. Therefore, for each participant, I calculated the percent choice for the larger,

later option in the questions for which the similarity model predicted random choice (separately for both

similar and both dissimilar). I then measured the absolute deviation of the observed choice percentage from

the expected percentage (50) and divided by the expected percentage:

predictive accuracy = 1− |observed− 50|
50 .
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discounting models performed about equally well, predicting 70.5-74.2%. The two-stage

similarity models, however, outpredicted the discounting models with a predictive accuracy

of 77.0-79.2%. As an exploratory analysis, I compared the single-parameter hyperbolic

model (Mazur) to the matching two-stage similarity model (similarity+Mazur). I chose

Mazur’s model because it performed as well as all other models, offers parsimony with a

single parameter, and is the standard model used in intertemporal choice. The two-stage

model significantly outperformed the discounting only model by 7.0±3.1 percentage points,

a medium-sized effect (Cohen’s d = 0.63). With the exception of Leland’s model, all of the

two-stage similarity models performed at fairly comparable levels and better than the

discounting models. Figure 1 shows boxplots of individual participant predictive accuracy

to illustrate the variation in accuracy across models.

[Insert Table 2 about here]

[Insert Figure 1 about here]

Leland’s (2002) similarity model had the lowest mean predictive accuracy of all

models at 69.4%, though this was comparable to the discounting models. As illustrated in

Figure 1, Leland’s similarity model included a large number of participants for whom it

had very low predictive accuracy. Many participants were clearly not choosing randomly

outside of the similarity domain, and the model was severely penalized by them in terms of

overall predictive accuracy. This similarity+random choice model, however, performed as

well as the discounting models.

When restricting the model selection analysis only to questions within the similarity

domain, the models resulted in the following predictive accuracies: exponential discounting

64.2%, Mazur hyperbolic discounting 64.9%, Rachlin hyperbolic discounting 63.3%, Kirby

hyperbolic discounting 69.1%, Loewenstein and Prelec hyperbolic discounting 65.0%,

arithmetic discounting 76.8%, similarity 85.7%. Thus, when it could make a deterministic

prediction, the similarity model outperformed all other models.
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Magnitude effect. To test the magnitude effect, I varied the amount magnitude,

while holding the amount ratio, short delay, and long delay within a block constant for

both similarity judgments and choice. To test whether the similarity model predicts

different choices within a block, I examined how the similarity ratings of reward amounts

varied at different reward magnitudes. Increasing amount magnitudes reduced similarity

judgments (Figure 2a), predicting an increase in choosing the larger, later options in

intertemporal choice. As predicted by the similarity judgments, actual choices for the

larger, later option increased as the amount magnitude increased (Figure 2b). Mazur’s

hyperbolic discounting predicts similar choices (i.e., a flat line) across these magnitudes.

Therefore, these findings contradict Mazur’s hyperbolic discounting but are consistent with

predictions of the similarity model, suggesting that similarity could underly the magnitude

effect observed here.

[Insert Figure 2 about here]

Experiment 2: Testing Similarity without the Magnitude Effect

The goal of the second experiment was to test whether the superior predictive

accuracy observed in the similarity model in Experiment 1 was only due to its ability to

account for the magnitude effect. To test this, I controlled for the magnitude effect by

holding both the amounts and the k parameter values at indifference constant. I then

varied only the delay magnitudes to determine whether similarity judgments tracked delays

and continued to outperform the discounting models.

Methods

Participants. In December 2014, I tested 62 participants (23 males and 39

females) with a mean±SD age of 20.1±3.5 (range 18-45) years, recruited from the

University of Nebraska-Lincoln Department of Psychology undergraduate participant pool.

Participants received one course credit rather than money for their participation.
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Materials and procedure. This experiment was conducted using the web-based

Qualtrics Survey Software and included five phases. The first phase presented a set of 31

binary choice questions (plus two practice questions). I restricted the analysis here to

questions with a small amount of $7, which resulted in 25 questions (Table S4). Results

were the same when including the six questions with small amount of $8. All questions had

small amounts of $7 and large amounts of $10. Questions had k parameters at indifference

of 0.333, 0.5, 0.6, 0.75, and 1.0. However, I varied the magnitude of the time delays from

18-309 days. I chose delays that would act as critical tests that result in different

predictions for the hyperbolic and similarity models. In particular, given the k parameters,

most participants should choose the larger, later option for all questions if they are

hyperbolically discounting. However, the similarity model predicts choosing the smaller,

sooner option in most of these questions because the amounts would likely be rated as

similar but the delays rated as dissimilar.

The second phase included a set of staircase choice questions consisting of eight

blocks of 10 questions in which the small amount varied from $1-10, while the large amount

($10), short delay (0 days), and long delay remained constant within a block. Across

blocks, the long delay varied between 2, 7, 14, 30, 60, 90, 180, and 365 days, with the order

of presentation randomized across participants. Mean choice percentage for binary choice

data are presented in Table S4 and staircase data are presented in Figure S2.

The next two phases measured similarity judgments. Participants judged the

similarity of receiving monetary rewards (e.g., “Would you rate receiving $1 or $10 as

similar or different?”) and then the similarity of waiting (e.g., “Would you rate waiting 0

days or 2 days as similar or different?”). The amount and time delay values used in the

similarity judgments included all values used in the intertemporal choices. The final phase

collected demographic information, including age, gender, university major, ethnicity,

employment status, number of children, and parental income.
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Data analysis. Data are available as supplementary materials. As in Experiment

1, for the model selection analysis, I removed participants whose maximum likelihood

estimates did not converge. This yielded data from 54 participants. From these

participants, I calculated predictive accuracy for all models.

Results and Discussion

Participants chose the larger, later option less as the overall delay magnitude

increased, even when amount magnitude and k values were held constant (Figure S3). This

is not predicted by Mazur’s hyperbolic discounting model. As demonstrated with the

amount magnitude effect in Experiment 1, the similarity judgments for these same delay

pairs matched the choice proportions in the intertemporal choice questions, again

suggesting that choices mirror similarity judgments (Figure S3).

To test whether similarity judgments are not only consistent with choice but

consistent with the use of the similarity model, I calculated predictive accuracy for all

models using this data. Table 3 and Figure 3 show that similarity models greatly

outpredict discounting models alone. Similarity+Mazur discounting outpredicts Mazur

discounting alone by 23.0±11.0 percentage points, a medium-sized effect (Cohen’s d =

0.57). Therefore, similarity outpredicts discounting alone because it accounts for

magnitude effects in both amounts and delays.

[Insert Table 3 about here]

[Insert Figure 3 about here]

Experiment 3: Testing Similarity and the Sign Effect

The goals of the third experiment were to (1) replicate key model selection results

from Experiment 1 and (2) explore whether similarity-based models can account for the

sign effect in intertemporal choice. This experiment allowed confirmatory tests of the

exploratory analyses comparing Mazur’s hyperbolic model and the two-stage similarity
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model with Mazur’s hyperbolic discounting. This tested whether adding similarity as the

first step robustly improves the predictive accuracy of the Mazur hyperbolic model. As in

Experiment 1, I first fit the hyperbolic models to one set of data and then tested the

predictive accuracy of the models on a different set of data.

To test the sign effect, I offered participants a series of intertemporal choices in which

they would receive money after a delay (gain condition) or pay money after a delay (loss

condition). I then asked them to judge the similarity of receiving monetary amounts,

paying monetary amounts, and waiting for time delays. This allowed me to map similarity

judgments for gains and losses on to the intertemporal choices for gains and losses, thereby

testing whether the similarity model can account for the sign effect.

Methods

Participants. From September to October 2013, I tested 68 participants (14 males

and 54 females) with a mean±SD age of 19.8±2.8 (range 17-39) years, recruited from the

University of Nebraska-Lincoln Department of Psychology undergraduate participant pool.

Participants received one course credit rather than money for their participation.

Materials and procedure. This experiment was conducted using Qualtrics

Survey Software and included eight phases. The first two phases presented a set of 40

binary choice questions from Luhmann (2013) (plus two practice questions). The second

phase included a set of staircase choice questions consisting of six blocks (plus 1 practice

block) of 10 questions in which the small amount varied from $1-10, while the large amount

($10), short delay (0 days), and long delay remained constant within a block. Across

blocks, the long delay varied between 2, 7, 14, 30, 60, and 90 days, with the order of

presentation randomized across participants. For both phases, the questions were phrased

as hypothetical gains (e.g., Would you prefer to RECEIVE $47 in 30 days or $58 in 80

days?). The third and fourth phases consisted of sets of the same binary and staircase

questions in which the amounts were hypothetical losses (e.g., Would you prefer to PAY
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$47 in 30 days or $58 in 80 days?). Mean choice percentage for binary choice data are

presented in Table S5 and staircase data are presented in Figures S4 and S5.

The next three phases measured similarity judgments. Participants judged the

similarity of receiving monetary gains (e.g., “Would you rate RECEIVING $1 or $10 as

similar or different?”), the similarity of paying monetary losses (e.g., “Would you rate

PAYING $1 or $10 as similar or different?”), and then the similarity of waiting (e.g., “Would

you rate WAITING 0 days or 2 days as similar or different?”). The amount and time delay

values used in the similarity judgments included all values used in the intertemporal

choices. The final phase collected demographic information, including age, gender,

university major, ethnicity, employment status, number of children, and parental income.

Data analysis. Data are available as supplementary materials. For the model

selection analysis, I removed participants whose maximum likelihood estimates did not

converge. This yielded data from 57 participants for the gain condition and 28 participants

for the loss condition.

Thirty-nine of the forty participants that were dropped in the loss condition almost

always chose the smaller, sooner option, and one participant almost always chose the larger,

later option (Figure S5). This likely occurred because some participants prefer losses to be

advanced while other prefer them to be delayed (Yates & Watts, 1975). I tested this by

measuring choice in the staircase questions in which both options had the same amount

($10) but at different delays. Each participant experienced six of these questions (one for

each staircase block), and I categorized each participant as preferring losses (1) advanced if

they chose the sooner option four or more times, (2) delayed if they chose the later option

four or more times, and (3) neutral if they chose both options equally often. Whereas in

the gain condition, 66 of 68 participants advanced gains (with the other two being neutral),

in the loss condition, 35 advanced losses and 31 delayed losses, roughly matching the even

split shown by Yates and Watts (1975). Moreover, in the loss condition, 28 of the 40

dropped participants (70%) were categorized as preferring advanced losses compared to 7 of
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the 28 retained participants (25%). Advancing losses implies a negative discount rate.

Therefore, the drop in participants in the loss condition seems to result from a high number

of participants with negative discount rates, which the stimuli were not designed to detect.

Results and Discussion

Replication. For the model selection replication, I used only the gain condition

data to provide the clearest comparision to Experiment 1. As in Experiment 1, the

two-stage similarity models yielded higher predictive accuracy than the discounting models

alone (Table 3). Mazur’s hyperbolic model correctly predicted 65.6±2.0% of the gain

binary choice data, and the two-stage similarity+Mazur model correctly predicted

68.7±2.1% of the data. Therefore, confirmatory analysis indicates that adding the

similarity assessment before discounting significantly improved predictive accuracy by

3.1±1.8 percentage points, a small effect size (Cohen’s d = 0.45). This benefit likely results

from the high predictive accuracy of 47.3% for the similarity model in the similarity

domain. This result replicates the findings of Experiment 1 despite testing in different

countries (Germany vs. U.S.), different payment schemes (performance-based pay vs.

hypothetical rewards), and different sex ratios (even vs. skewed toward females). Thus, the

similarity model provides robust predictive accuracy over discounting models alone.

[Insert Table 4 about here]

Sign effect. To investigate whether the similarity model can account for the sign

effect, I conducted the previously described model selection analysis on the loss data. Table

3 shows that all models, except Leland’s similarity model performed at comparable levels.

Notably, the similarity models provided the same predictive accuracy as the discounting

models. Mazur’s hyperbolic model correctly predicted 68.3±4.2% of the loss binary choices,

and the two-stage similarity model with Mazur hyperbolic discounting predicted a

comparable 67.5±4.5%. Therefore, though similarity models do not outperform discounting

models in the loss domain, they perform equally well, thereby accounting for the sign effect
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as well as discounting models.

To more thoroughly explore the sign effect, I calculated discount rates for both the

gain and loss data. Because the previously described analyses on gain and loss data are

based on different sets of participants (57 participants for the gain condition and 28

participants for the loss condition), I restricted this analysis to only participants for whom

I could calculate maximum likelihood estimates for both gain and loss data (i.e., the 28

participants from the loss condition). The discount rate for gains (ρ =0.016±0.001)

significantly differs from that for losses (ρ =0.009±0.001), with steeper discounting for

gains. This finding replicates previous work in the field demonstrating steeper discounting

for gains compared to losses (Estle et al., 2006; Hardisty et al., 2013; Thaler, 1981). I

also calculated the similarity ratings of the reward amounts for gains and losses in both

binary and staircase intertemporal choice data. Participants judged the amounts as similar

in 30% of gain amount pairs and 28% of loss amount pairs, a significant difference of

2.2±2.0% with a small effect size (Cohen’s d = 0.26). Since amounts are judged as more

similar for gains than losses, this suggests that participants will ignore amounts and focus

on delays more for gains than losses. This emphasis on delays will favor choosing the

smaller, sooner option more, which results in higher discount rates for gains. Thus,

differences in similarity judgments match those observed in intertemporal choices, though

replications with larger samples are needed to confirm reliability.

A key limitation of interpreting the sign effect data is the fact that so many

participants were dropped due to what appears to be negative discount rates for losses.

Therefore, the analysis provided here applies to only a subset of decision makers, most of

which have positive discount rates. Though Yates and Watts (1975) showed clear

individual differences in positive or negative discount rates for losses, little research has

expanded on or even recognized the possibility of negative discount rates when fitting

models to loss data. Future work must acknowledge this variation to fully capture

intertemporal choice data.
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General Discussion

In Experiment 1, the discounting models all predicted new data with roughly equal

success. Yet, the two-stage similarity-based models provided the highest mean predictive

accuracy rates, with comparable levels of performance across the different discounting

models. Moreover, similarity judgments tracked differences in amount magnitude,

consistent with the magnitude effect observed in intertemporal choices. In Experiment 2,

similarity judgments tracked choices and the similarity model outpredicted discounting

models even when the magnitude effect was removed. While holding reward amounts

constant (thereby removing the magnitude effect), varying the delay magnitudes influenced

choices consistent with predictions from the similarity model. In Experiment 3, a

replication of Experiment 1 again showed that adding similarity improved predictive

accuracy, as the two-stage similarity-hyperbolic (Mazur) model outpredicted the hyperbolic

(Mazur) model alone for the gain data. The similarity model also accounted for the sign

effect both by predicting choices framed as losses as well as the hyperbolic discounting

model and by demonstrating that similarity judgments tracked the gain/loss difference

observed in discount rates. Thus, model generalization tests and tests of anomalies provide

converging evidence supporting attribute-based models of intertemporal choice, such as the

similarity model, as viable alternatives or precursors to discounting models.

Leland (2002) provided a similarity-based model of intertemporal choice that

randomly chooses when similarity does not discriminate between attributes. This model is

probably not an accurate model of choice given the random component of choice. In fact,

this model cannot account for preference reversals5 observed in participant data (Green,

Fristoe, & Myerson, 1994; Kirby & Herrnstein, 1995). Yet, this simple model performed

5For example, the large amount is typically chosen over the small amount when both delays are large.

Preference reversals occur when choice switches from larger, later to the smaller, sooner option as the delay

decreases (holding amounts constant). Leland’s model would predict that choice should switch from larger,

later (because delays are similar) to random as delays decrease (because they become more dissimilar).
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as well as discounting models for gain data. Viewing the distribution of participant

accuracies suggests that this model yielded the largest range in predictive accuracies

(Figure 1).

In Rubinstein’s (2003) version of the similarity model, individuals are expected to use

similarity to make a choice, and, if similarity does not distinguish, then use another

criterion. Two-stage models of similarity were, in fact, quite successful in predicting

participant choices. Models that start out using similarity models and then use discounting

models if similarity does not make a deterministic prediction outperformed all other models

for gain data. This raises the intriguing possibility that people start out with an

attribute-based strategy for intertemporal choice and then may switch to discounting or

other strategies as a last resort.

Though discounting models performed well as the second stage outside of the

similarity domain, this does not imply that only discounting models are needed. In point of

fact, if analysis is restricted to only questions found within the similarity domain for gains,

the similarity model outperformed the next best models by 9-40 percentage points.

Therefore, when the similarity model can make a deterministic prediction, it predicts

choice at a much greater level than any of the discounting models. This indicates that

similarity adds a unique contribution to intertemporal choice beyond discounting for gains.

For losses, similarity performed as well as but not better than discounting models.

This may result from assessing delay similarity with a single set of judgments that did not

discriminate between gains and losses. Including the gain and loss dimension for delay

similarity judgments may further improve the accuracy of the similarity model in the loss

domain.

Most studies of intertemporal choice typically rely on nonlinear regression of choice

data to discriminate between models (e.g., Green, Myerson, & Macaux, 2005; McKerchar

et al., 2009). In these analyses, hyperbolic discounting usually does a good job of fitting

data, as it did in these two experiments. To improve fit, modelers often add more
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parameters to the hyperbolic model (Loewenstein & Prelec, 1992; Myerson & Green,

1995; Rachlin, 2006). Simply fitting models is problematic, however, because of the

possibility of overfitting data (Pitt & Myung, 2002). Having more parameters allows a

model to fit the noise in the data at the expense of capturing the overall relationship. One

way to properly test the models and avoid overfitting is to predict new data (Marewski &

Olsson, 2009). Though a common practice in machine learning and some areas of

psychology, few if any studies of intertemporal choice use either cross validation (fitting a

proportion of a single data set and predicting the rest; reviewed in Shiffrin, Lee, Kim, &

Wagenmakers, 2009) or generalization (fitting one data set and predicting a different set;

Busemeyer & Wang, 2000). This study used a generalization technique in intertemporal

choice by fitting model parameters on the staircase data and measuring predictive accuracy

on a different set of binary choice data.

In both experiments, adding more parameters to the Mazur hyperbolic model (e.g.,

using the Rachlin, Kirby, and Loewenstein & Prelec models) typically improved fit of the

gain data. In predictive accuracy, however, at best the multi-parameter hyperbolic models

performed only as well as the single-parameter hyperbolic model (Tables 2 & 3), and, in

some cases, the single-parameter model predicted better. In addition, when combined with

the similarity models, the two-parameter discounting models did not increase predictive

accuracy over the one-parameter version. These two findings supports the notion that

high-parameter models can overfit the data, especially when they are not constructed to

accommodate psychological processes. Therefore, the current practice of comparing

intertemporal choice models based on model fitting does not translate well to predicting

new data.

Limitations and Future Directions

One limitation of interpreting the results of these studies is that the predictive

accuracies of many of the models was fairly similar (Tables 2 & 3). In Experiment 1, the
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discounting models performed quite similarly. For gains, similarity models yield accuracies

3-11 percentage points higher than discounting models alone, matching the differences

typically used to distinguish between fits of exponential and hyperbolic models (Kirby &

Maraković, 1995; McKerchar et al., 2009). Thus, including similarity increases predictive

accuracy. However, within these two tiers of models (discounting alone and

similarity+discounting), the models perform similarly. We need to design future

experimental stimuli specifically for discriminating among these models to better

understand the relative success of discounting and similarity models. Scholten, Read, and

Sanborn (2014) designed their studies to discriminate among several discounting models

and their tradeoff model, with time-weighting and value functions included for both model

types. The attribute-based tradeoff model outperformed the Loewenstein and Prelec (1992)

hyperbolic model. Further, Dai and Busemeyer (2014) demonstrated that an

attribute-based diffusion model can outpredict discounting models when using probabilistic

and dynamic specifications. Thus, we have evidence from multiple studies that

attribute-based models can better account for intertemporal choices than discounting

models. An obvious next step is to begin testing attribute-based models against each other.

A limitation of the similarity model is that it lacks an explanation of the similarity

judgment itself. It effectively pushes the explanatory question from the intertemporal

choice to the similarity judgment. Thus, further refinements of the similarity model are

needed to explore how individuals make similarity judgments for reward amounts and time

delays. Rubinstein (1988), for instance, proposed that the ratio between rewards could

drive similarity judgments. Though a nice start, this does not completely capture the

nature of similarity judgments, because both ratios and differences influence similarity

judgments for amounts and delays. Similarity judgments in models of choice clearly require

more in-depth investigation.

Both cognitive psychology and machine learning have a long history of exploring

similarity concepts (Aha, Kibler, & Albert, 1991; Goldstone & Son, 2005; Hahn &
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Chater, 1998; Shepard, 1987; Tversky, 1977). At the moment, there does not appear to

be much work on similarity in monetary rewards or time delays, though researchers have

investigated the role of time estimation on intertemporal choice (Wittmann & Paulus,

2008; Zauberman, Kim, Malkoc, & Bettman, 2009).

One key finding in the similarity literature is that context matters greatly. We would

not expect people to rate $1 vs. $3 in the same way as they rate 1 cent vs. 3 cents or 1 day

vs. 3 days or 1 year vs. 3 years. In fact, each of these four pairs could very well elicit

different similarity ratings, despite sharing 1 vs. 3 in common. Moreover, even within

identical magnitudes and currencies, data presented here show that gaining rewards vs.

losing rewards are different contexts that influence similarity judgments. States such as an

individual’s socio-economic status also likely shape similarity judgments: an undergraduate

will judge the similarity of $100 and $200 differently than a billionaire. Thus, contextual

factors play a key role in similarity judgments, highlighting important open areas of

research.

As a further example of context effects, the pairing of the amounts and delays

together in an intertemporal choice question may influence their similarity judgments. For

example, $1 vs. $3 may be rated as more similar when paired with long delays than when

paired with short delays, a phenomenon termed inseparability (Scholten & Read, 2010).

This interdependency suggests that the current estimates of accuracy for the similarity

models are a lower bound because similarity was measured separately from choice. If

similarity were measured concurrently with choice, the similarity model would likely

perform even better.

Understanding the contextual basis of similarity judgments could provide key insights

into apparent violations of discounting model predictions. Many discounting models must

change discount rates with not only the magnitude and sign of the reward but also the

direction of the reward sequence (improving sequences are preferred over declining

sequences) and the reward domain (monetary outcomes are discounted more steeply than
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health outcomes). Here, I demonstrate that similarity judgments can capture how the

contexts of reward magnitude and sign influence intertemporal choice. This finding raises

the possibility that similarity judgments may also account for other effects of context on

intertemporal choices.

In summary, similarity is highly context dependent. Yet, its context dependence

offers a powerful test of the similarity model. We can make predictions about how the

variation within and between individuals in similarity judgments will influence within- and

between-individual variation in intertemporal choices. Combining the rich literature on

similarity with process models of decision making could open new avenues of future

research on the similarity model and the process of making intertemporal choices.
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Table 1

Intertemporal Choice Models

Models Choose Larger, Later if...

Exponential Ale
−δtl > Ase

−δts

Hyperbolic (Mazur) Al
1+ktl

> As
1+kts

Hyperbolic (Rachlin) Al
1+ktσ

l
> As

1+ktσs

Hyperbolic (Kirby) Al
1+kAµ

l
tl
> As

1+kAµs ts

Hyperbolic (Loewenstein & Prelec) Al
(1+αtl)β/α

> As
(1+αts)β/α

Arithmetic Al − λtl > As − λts

Similarity ts and tl are similar but As and Al are dissimilar

Note. A represents reward amount; t represents time delay; δ, k, σ, µ, α, β, and λ represent

model-specific parameters; and subscripts s and l refer to the smaller, sooner and larger, later option,

respectively. If the inequality is reversed for the first five models, they predict choice for the smaller,

sooner option. For similarity, if As and Al are similar but ts and tl are dissimilar, it predicts choosing the

smaller, sooner option. If neither of these is satisfied, it either chooses randomly (Leland, 2002) or uses

some other criterion (Rubinstein, 2003).
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Table 2

Model Selection Results for Experiment 1

Model Aggregate AICc Individual AICc Predictive Accuracy

Exponential 6265.6 62.1 71.7±2.3

Hyperbolic (Mazur) 6096.1 62.5 72.2±2.4

Hyperbolic (Rachlin) 5989.6 60.3 70.5±2.8

Hyperbolic (Kirby) 6078.7 62.4 73.1±2.1

Hyperbolic (Loewenstein & Prelec) 5992.9 61.3 72.1±2.8

Arithmetic 6451.4 60.2 74.2±1.8

Similarity (Leland) NA NA 69.4±7.3

Similarity+exponential NA NA 79.0±1.5

Similarity+Mazur NA NA 79.2±1.6

Similarity+Rachlin NA NA 77.7±1.7

Similarity+Kirby NA NA 78.2±1.6

Similarity+L&P NA NA 78.7±1.5

Similarity+arithmetic NA NA 77.0±1.7

Note. Aggregate AICc values are calculated using all staircase data. Individual AICc values are

the median AICc values calculated separately for each participant. Predictive Accuracy is the

mean percentage (± within-subjects 95% confidence intervals) of correctly predicted binary choice

data calculated over all participant means. Best fitted or predicted models for each measure are in

boldface. NA refers to the fact that the similarity models are not fitted to staircase data. Data

are based on 51 participants.



INTERTEMPORAL SIMILARITY 38

Table 3

Model Selection Results for Experiment 2

Model Aggregate AICc Individual AICc Predictive Accuracy

Exponential 4886.8 32.5 52.9±7.8

Hyperbolic (Mazur) 4323.8 27.4 42.4±7.4

Hyperbolic (Rachlin) 3894.6 26.1 43.9±6.6

Hyperbolic (Kirby) 4323.8 30.8 42.1±7.2

Hyperbolic (Loewenstein & Prelec) 3890.2 24.7 42.4±7.1

Arithmetic 6361.9 45.1 48.3±6.2

Similarity (Leland) NA NA 55.6±14.1

Similarity+exponential NA NA 68.4±7.1

Similarity+Mazur NA NA 65.3±5.7

Similarity+Rachlin NA NA 64.9±5.6

Similarity+Kirby NA NA 64.5±5.7

Similarity+L&P NA NA 64.1±5.7

Similarity+arithmetic NA NA 67.2±5.2

Note. Aggregate AICc values are calculated using all staircase data. Individual AICc values are

the median AICc values calculated separately for each participant. Predictive Accuracy is the

mean percentage (± within-subjects 95% confidence intervals) of correctly predicted binary choice

data calculated over all participant means. Best fitted or predicted models for each measure are in

boldface. NA refers to the fact that the similarity models are not fitted to staircase data. Data

are based on 54 participants.



INTERTEMPORAL SIMILARITY 39

Table 4

Model Selection Results for Experiment 3

Gain Loss

Model Aggregate

AICc

Individual

AICc

Predictive

Accuracy

Aggregate

AICc

Individual

AICc

Predictive

Accuracy

Exponential 2879.0 22.1 66.6±2.8 2881.8 27.5 68.4±4.0

Hyperbolic (Mazur) 2701.7 21.2 65.6±2.0 2798.5 25.3 68.3±4.2

Hyperbolic (Rachlin) 2546.8 18.1 61.4±2.6 1903.0 19.7 68.1±3.7

Hyperbolic (Kirby) 2701.7 22.3 55.5±2.8 2798.5 25.9 67.1±3.5

Hyperbolic (L&P) 2533.0 23.7 52.4±3.6 2420.7 19.1 65.6±3.6

Arithmetic 3120.4 21.4 43.9±3.7 2965.9 30.5 64.4±7.1

Similarity (Leland) NA NA 64.0±7.4 NA NA 42.1±17.7

Similarity+exponential NA NA 70.2±2.4 NA NA 68.3±3.5

Similarity+Mazur NA NA 68.7±2.1 NA NA 67.5±4.5

Similarity+Rachlin NA NA 65.9±2.1 NA NA 68.6±2.6

Similarity+Kirby NA NA 61.7±2.2 NA NA 67.9±2.9

Similarity+L&P NA NA 61.4±2.4 NA NA 66.5±2.8

Similarity+arithmetic NA NA 55.4±3.7 NA NA 66.5±5.7

Note. Aggregate AICc values are calculated using all staircase data. Individual AICc values are the

median AICc values calculated separately for each participant. Predictive Accuracy is the mean

percentage (± within-subjects 95% confidence intervals) of correctly predicted binary choice data

calculated over all participant means. Best fitted or predicted models for each measure are in boldface.

NA refers to the fact that the similarity models are not fitted to staircase data. Data are based on 57

participants for the gain condition and 28 participants for the loss condition.
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Figure 1 . Predictive accuracy of intertemporal choice models in Experiment 1. The mean

predictive accuracy per model varied across participants. Diamonds and error bars represent

mean and within-subjects 95% confidence intervals. Boxplots show median, interquartile range,

and range. Dashed line represents maximum predictive accuracy.
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Figure 2 . Tests of magnitude effect in Experiment 1. Each panel represents a block of questions

with same amount ratio. (a) For the Immediate questions, the short delay is always 0 days

(today). For the Delayed questions, the short delay ranges from 4-8 days. The percentage of

participants who rated the amounts as similar decreased as the large reward magnitude increased.

Similarity judgments were identical if the short delay was immediate or delayed, so a single line is

drawn. (b) Choice for the larger, later option in the binary choices increased with the reward

magnitude. Points and error bars represent means and within-subjects 95% confidence intervals.
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Figure 3 . Predictive accuracy of intertemporal choice models in Experiment 2. The mean

predictive accuracy per model varied across participants. Diamonds and error bars represent

mean and within-subjects 95% confidence intervals. Boxplots show median, interquartile range,

and range. Dashed line represents maximum predictive accuracy.


