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Abstract

What are the dynamics and regularities underlying social contact, and how can contact with the people in one’s social
network be predicted? In order to characterize distributional and temporal patterns underlying contact probability, we
asked 40 participants to keep a diary of their social contacts for 100 consecutive days. Using a memory framework
previously used to study environmental regularities, we predicted that the probability of future contact would follow in
systematic ways from the frequency, recency, and spacing of previous contact. The distribution of contact probability across
the members of a person’s social network was highly skewed, following an exponential function. As predicted, it emerged
that future contact scaled linearly with frequency of past contact, proportionally to a power function with recency of past
contact, and differentially according to the spacing of past contact. These relations emerged across different contact media
and irrespective of whether the participant initiated or received contact. We discuss how the identification of these
regularities might inspire more realistic analyses of behavior in social networks (e.g., attitude formation, cooperation).
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Introduction

On 17 March 2009, doctors detected the first human case of

H1N1 influenza on a Mexican farm. H1N1 quickly spread

worldwide and by the end of 2009, the World Health Organiza-

tion estimated over 600,000 cases in 208 countries, accounting for

at least 12,000 deaths [1,2]. Disease transmission, a vital issue in

today’s highly connected society, offers an important application

for studying social networks. For instance, it has been shown that

the addition of even a small proportion of random connections

among network nodes can dramatically lower the critical level of

infectiousness above which a disease turns into an epidemic [3].

Social networks have been investigated by social scientists for over

50 years; they have recently also attracted the interest of physicists

and biologists [4,5]. Most analyses have focused on the structure (or

topology) of a network, such as the number of partners with which

individuals interact (degree), the interconnections among individ-

uals (clustering), and the number of connections required to

connect two individuals (path length). Relatively little work has

examined connection strengths (edge weights), that is, the intensity of

interactions between network members. In their pioneering

research, de Sola Pool and Kochen [6] acknowledged that not

all connections in a social network are equally strong. For

simplicity’s sake, however, they assumed equal strength in their

analyses, and subsequent work on social networks paid little heed

to the strength of connections.

The goal of this article is to study regularities in connection

strength, defined as the probability of social contact of an

individual to the different members of her social network, by (a)

examining the distribution of contact probability across network

members and (b) predicting future contact probability based on

aspects of previous contact. Specifically, we demonstrate how

predictions for regularities in the dynamics of contact probability

can be derived from a memory model that has previously been

used to identify environmental regularities (e.g., in word use). This

model predicts that future contact follows from the frequency,

recency, and spacing of previous contacts in very specific ways.

To examine connection strength, we conducted a diary study in

which participants recorded, over an extended period of time,

contacts with members of their social networks. Our analysis of the

interaction patterns underlying social contact enables more

realistic models both of social systems and of cognition at the

level of the individual. In the Discussion section, we elaborate how

regularities in social contact are important in attitude formation

[7] and social transmission, and how they can be critical in the

evolution of cooperation [8]; moreover, we discuss how they are

related to functional accounts of memory [9].

Distribution of Social Contact
Although network analyses often focus exclusively on the

presence versus absence of a connection, several researchers have

highlighted that differences in connection strength (i.e., weighted

networks) can be critical for understanding social networks.

Granovetter [10], for instance, distinguished between ‘‘weak’’

and ‘‘strong’’ connections, arguing that the former in particular

drive the surprising interconnectedness of social systems. In

analyses of networks among scientists, Newman [11] has shown

that patterns of scientific collaborations are better captured when

differential connection strengths are allowed. Both Yan, Zhou,
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Wang, Fu, and Wang [12] and Read, Eames, and Edmunds [13]

have demonstrated in simulations that infectious diseases spread

more slowly in weighted than in unweighted networks. In addition,

many theoretical studies have emphasized the importance of

connection strength in social networks [11,14–16]. Against this

background, it seems surprising that few empirical data exist on

how the connection strengths of a person to members of her social

network (e.g., operationalized as the probability of contact) are

typically distributed.

Research on social relations has shown a strongly differentiated

structure in social connections. For instance, people are known to

have very ‘‘close’’ contact with just a few members of their social

network [17–19]. However, precise quantifications of how

connection strength is distributed across a person’s network

members are rare. Are values normally distributed around a

‘‘typical’’ contact probability with only rare extreme values; or is

the distribution skewed, with very few high probabilities and very

many low probabilities (or vice versa)? In one of the few studies

examining the distribution of connection strengths, Ramasco and

Gonçalvez [20] observed a power distribution (of collaboration

probability) in a network of movie actors, indicating a highly

skewed distribution. We aim to examine the empirical distribution

of connection strength in day-to-day interactions.

Temporal Dynamics of Social Contact: How Does The
Past Predict the Future?

Another important issue for understanding connection dynam-

ics in social networks is how contact probability with an individual

network member can be predicted [16]. A network member’s

contact probability is predictable to the extent that it follows

certain regularities; we are not aware of any analyses that have

systematically examined such regularities. To explore the temporal

dynamics of social contact, we use the theoretical framework of the

rational analysis of memory [9], which ties memory performance

to the statistical structure of the environment. Our analyses are

based on a model that assumes that memory phenomena—in

particular, learning curves, forgetting curves, and spacing effects—

represent efficient responses to typical patterns of occurrence in

the environment. Anderson and Schooler [21] found evidence for

regularities in the relationship between the probability of a certain

word’s occurrence and the pattern of previous uses of that word.

The results of another analysis by Anderson and Schooler hinted

that systematic relations might also exist in social contacts.

Analyzing three years’ worth of email received by John Anderson

(JA), they observed three patterns relating the probability of future

email contact to the frequency, recency, and spacing of previous

contact, respectively. We next describe these regularities in more

detail.

Frequency effects. The probability p of someone contacting

JA on day t increased linearly with the number of days f on which

he had contact with this person in the previous w days: p = b0+b1f.

In this equation, the intercept b0 represents the probability of

encountering a network member given that one has not

encountered her in the window of interest, and b1 reflects the

degree to which the probability increases with more frequent

previous contacts. Thus, the probability of future contact increases

linearly with the frequency of previous contacts.

Recency effects. Anderson and Schooler [21] also found that

the recency or time since last contact was strongly related to the

probability of future contact. Specifically, the relation followed a

power function between the odds o = p/(1-p) that someone

contacted JA and the number of days r since he last had contact

with that person (on day t-r): o = cr2a. The parameter c represents

the odds of contact today after the last contact being one day ago,

and a reflects how quickly the odds of contact decrease as the

number of days since the last contact increases. The power

function implies a scale-free relationship; that is, the odds of

contact show a similar pattern independent of whether recency is

scaled in minutes, days, or years.

Spacing effects. Finally, Anderson and Schooler [21] found

evidence that future contact is also affected by the spacing of past

contacts. Take two persons with whom JA had the same number

of contacts previously, but for one person the contacts were spread

out over time (spaced contacts), whereas for the other person the

contacts occurred clustered together in time (massed contacts). The

probability of contact soon after the last contact was higher for the

massed contacts, whereas the pattern was reversed for the

probability of contact at longer lags.

Anderson and Schooler’s [21] single-case study based on email

contacts hints that social interactions might follow certain

regularities. Moreover, it suggests that an approach originally

proposed to study memory offers a useful tool to explore dynamics

in social contact. Our diary study reported below extends

Anderson and Schooler’s work in a number of important ways.

First, rather than focusing on a single person, our study involves a

group of 40 participants. Second, our analysis tracks not only

received email correspondence, but both received and self-initiated

contacts in face-to-face interactions, phone calls, and other contact

media. Finally, Anderson and Schooler collected their data in the

early days of email. Even with the rise of email use, for heavy users

email communication comprises only about 25% of social contact

[22]. As a result, it is currently unclear whether the regularities

Anderson and Schooler observed can be found in social contact

more generally.

In sum, whereas empirical and theoretical work on social

networks has previously focused on the static structure of social

networks, we emphasize the dynamics of social contact. Next, we

report a study exploring regularities in the distribution of social

contact and in the relationships between past and future contact

based on people’s day-to-day encounters.

Methods

Ethics Statement
The study was approved by the Ethics Committee at the Max

Planck Institute for Human Development. Participants completed

a written informed consent form before starting the study.

Participants, Materials, and Procedure
We recruited 40 participants (20 male, 20 female, mean age

25.2 years; range 19–31) from universities in Berlin and paid them

J100 each for taking part in the study. They were instructed to

record their daily social contacts in a diary for 100 consecutive

days. To ensure that the recorded contacts met a minimum level of

relevance, we defined social contact as all face-to-face or phone

conversations lasting at least 5 minutes and all communication

conveyed electronically or on paper of at least 100 words in length.

The diary was a booklet containing a matrix, with rows

representing individuals with whom contact occurred and columns

representing days. Participants added the names of the individuals

with whom social contact occurred to the rows after the first

contact and then entered all ensuing contacts with that person in

that row. For each day on which contact with a network member

occurred, participants entered into the day’s cell the contact mode

(face-to-face, email/letter, phone, or other) and the direction of the

contact, defined as whether the contact occurred on the other

person’s initiative or their own. If there were multiple contacts

with a network member on a given day, participants recorded only
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the first contact. To decrease the risk of data loss, we encouraged

participants to enter data by the end of each day at the latest. After

completing the diary, participants classified each network member

listed to one of eight categories (romantic partner, friend, flatmate,

family, work colleague, acquaintance, relative, or other). To

ensure anonymity, participants erased the names of the contacts

from the diary before mailing it back to the experimenter. The raw

data are available in File S1 and from the Dryad Digital

Repository: http://doi.org/10.5061/dryad.pc54g.

Results

Distribution of Social Contact
Over the 100 days, each participant recorded contacts with, on

average, 77.1 (SD = 33.2; range 26–155) different network

members, with M = 8.3 (SD = 3.77; range 2.3–18.9) contacts per

day. To determine the distribution of connection strength across

the different network members, we calculated for each her contact

probability across the 100 days, defined as the proportion of days

on which a contact occurred. Figure 1a shows for 10 binned levels

of contact probability the average (across participants) proportion

of network members that fell into the respective bin. The

distribution was highly skewed, with a small fraction of a person’s

network accounting for a large share of contacts. The median

contact probability with any network member across participants

was 5.5%. [Note that the lower a network member’s contact

probability, the lower her chance of being recorded in a diary

covering a limited amount of time. With longer study periods, an

even lower median contact probability can be expected [23]).

Contact probability was 50% or higher for only 3.8% of

participants’ network members; and 20% of the network members

accounted for, on average, 63.4% of the social contacts. Note that

because we disregarded multiple contacts with the same person on

one day, our data may underestimate the skewness (and

predictability) of social contact. How were contacts distributed

across the different social categories of network members?

Although close network members (i.e., romantic partner, friends,

family, relatives, and flatmates) constituted the minority of the

participants’ social networks (38%), this group was involved in the

majority of the contacts (68%).

Figure 1b plots the individual data (collapsed across partici-

pants) as a cumulative distribution function in a log-log plot. That

is, the figure shows for the different levels of contact probability p

the proportion of network members with contact probability p or

higher. The distribution is well captured by an exponential

function, Pr(P$p) = 1.093 e213.25 p (R2 = 0.986). An exponential

function fitted the data better than a power function

Pr(P$p) = 0.109 p20.494 (R2 = 0.458). Moreover, as shown in

Figure S1, when the individual data were fit for each participant

separately, an exponential function yielded a better fit for 31 of the

40 participants (77.5%). Note that in a log-log scale, an

exponential function curves down, whereas a power function

results in a linear relationship. An exponential function results in a

linear relationship in a log-linear scale. In sum, our data suggest

that frequent contact occurs with only a very small number of

network members, and that with most members contact is

relatively rare.

Temporal Patterns of Contact
Next, we turn to the relationship between the probability of

future contact and aspects of past contact. Specifically, we examine

whether the probability of contact on day w+1 can be predicted by

the frequency, recency, and spacing of contact in a window of w

days. For all analyses, w was set to 30. We chose this window size

because it strikes a good balance between being sufficiently large

for a relationship to manifest itself and allowing for a substantial

number of windows that can be calculated across the study period

of 100 days. Analyses using alternative window sizes (see Figure S2

and Table S1) led to similar conclusions. (For alternative analyses,

predicting the probability of having at least one contact between

day w+1 and day 100, see Figure S3 and Table S2.)

Frequency effects. We calculated the probability of contact

with a person on the 31st day as a function of the number of

contacts f with that person in the preceding 30 days. Figure 2a

indicates a strong linear relationship, with the probability of

contact increasing proportionally with the frequency of previous

contacts, p = 20.01+0.03 f (R2 = 0.99).

Recency effects. For various values of r (i.e., the number of

days since last contact), we determined those network members

with whom the last contact occurred exactly r days ago in the time

window of 30 days and calculated the proportion of network

members for whom a contact occurred on the 31st day. Figure 2b

shows the odds of contact as a function of the recency of the last

contact plotted on a log-log scale. (As power functions are

unbounded above, Y cannot be a bounded measure, such as

probability of contact. Therefore, we instead used odds, which—

like power functions—are unbounded above.) As can be seen, the

data are well described by the power function o = 0.63 r20.91

(R2 = 0.90). Figure 2b also reveals some systematic deviations from

a power relationship, however, with the probability of contact

spiking at r = 7, 14, 21, and 28. These spikes are likely to reflect

another regularity, namely weekly cycles in social activity.

Combined frequency and recency effects. Frequency

typically correlates with recency of contact. That is, the last

contact with a person encountered frequently will tend to have

occurred more recently than the last contact with a person

encountered only rarely. To compute this correlation, we

determined for each time a contact to someone occurred on day

31, the number of days since the last contact as well as the number

of contacts to that person in the previous 30 days. In our data, this

(Pearson) correlation was r = 20.60 (p = 0.001). To test whether

the power function between the odds of contact and the recency of

the last contact also held when frequency was kept constant, we

analyzed the relation separately for different levels of contact

frequency. Figure 2c shows the odds of probability of contact as a

function of recency for network members with high contact

frequency (defined as 6–15 contacts in the previous 30 days) and

those with low contact frequency (1–5 contacts). As can be seen,

the patterns are rather similar for both levels of contact frequency,

implying that the relationship between contact probability and

recency holds irrespective of frequency. The best fitting functions

were o = 1.57 r21.08 (R2 = 0.79) and o = 0.24 r20.60 (R2 = 0.77) for

high and low contact frequencies, respectively.

Spacing effects. Figure 3a shows the pattern of contacts for a

typical participant. As can be seen, contacts with some network

members occurred in clusters across the 100 days, whereas

contacts with others were spaced relatively equally. To examine

how the spacing of past contact affected the probability of future

contact, we selected from all participants cases with exactly two

contacts (i.e., f = 2) in the past 30 days and determined the

probability of contact with these cases on the 31st day. (Similar

results were obtained for higher values of f.) Massed contacts were

defined as cases in which the two contacts occurred on two

consecutive days; spaced contacts, as cases with a lag of 1 to 28

days intervening between the two contacts. Figure 3b plots the

probability of contact as a function of recency, separately for

massed and spaced contacts. As indicated by the intersection of the

lines for massed and spaced contacts in the figure, there was an
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interaction between recency and the distribution of past contacts

over time. More specifically, at short recencies (i.e., briefly after the

last contact), the probability of contact was higher for massed than

for spaced contacts. At longer recencies (i.e., when the last contact

occurred some time ago), however, the pattern was reversed. The

decay parameter a, indicating how quickly the odds of contact

decrease as the number of days since the last contact increases, was

higher for massed than for spaced contacts (.702 vs. .360). These

results suggest that taking into account the spacing of past contacts

helps to predict the probability of future contact.

Contact Direction and Medium
Do the regularities in social contact depend on whether the

contact was recorded as received or self-initiated, and/or on the

contact medium? Participants indicated that they had initiated

69.9% of the recorded contacts. As each contact has both a

receiver and a sender, one might have expected equal numbers of

self-initiated and received contacts in the world. Possible reasons

for the data departing from such an equal distribution might be

that participants were somewhat more likely to forget received

contacts, or that they tended to code contacts with an ambiguous

direction as self-initiated. Alternatively, people who take initiative

Figure 1. Distribution of contacts across network members. (a) The mean (across participants) proportion of network members with contact
probability p, binned for 10 levels of p (i.e., the first bin contains network members with p = 0.01–0.1, the second bin those with p = 0.101–0.2, etc.).
Error bars represent standard errors of the mean. (b) Cumulative distribution of the collapsed individual data in a log-log plot, showing for different
levels of contact probability p the proportion of participants with that contact probability or higher. This distribution is well captured by an
exponential function.
doi:10.1371/journal.pone.0086081.g001
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might be overrepresented in our sample. The majority of recorded

contacts were spoken and simultaneous communications (face-to-

face: 66.1%; phone: 17.1%); written communications occurred less

frequently (email and letters: 8.1%). Interestingly, Figure 4

suggests an interaction between direction and contact medium:

80% of face-to-face contacts were recorded as being self-initiated,

whereas the direction of contact for the other types of contact

media was more symmetrical, with a slight bias towards received

contact.

Importantly, Figure 5 shows that the patterns in the relation

between contact probability and frequency and recency held for

both self-initiated and received contact (see Table S3 for regression

functions). The only qualification is that the 7-day spikes were less

pronounced for received contact. Given the overall robustness of

the patterns, it seems unlikely that the differences in the

distribution of received and self-initiated contact, possible biases

in the reporting of contacts, or an overrepresentation of proactive

people in our sample critically biased our conclusions.

As can be seen in Figure 6, the effects of frequency and recency

also seem to hold across the different types of contact media (see

Table S4 for regression functions). However, the figure also shows

that for email contacts, more past contacts did not increase the

probability of future contact as strongly as they did for face-to-face

or phone communication. This may result from the indirect and

asynchronous nature of email communication. Moreover, the 7-

day spikes in the analyses of recency (lower graphs) were more

pronounced for face-to-face interactions than for the other contact

media.

Discussion

As a rich source of both important opportunities and

information, the social environment represents a key contextual

variable for the human species. Our analyses show that recording

social contacts over a little more than three months allows one to

make pretty good bets about a person’s contacts on any given day.

Two main findings emerged. First, in contrast to the frequent

assumption in theoretical analyses of cooperation that the

distribution of contact probability is equal across network

members, we found a highly skewed distribution that is well

described by an exponential function (Figure 1b). This finding

indicates that spread of contagions such as fads or viruses is more

likely to occur via one’s family than via acquaintances. Second, the

probability of future contact follows the temporal dynamics of past

social contacts in highly specific ways. Namely, future contact

scales linearly with frequency of past contact, proportionally to a

power function with recency of past contact, and differentially

according to the spacing of past contact. Moreover, in the

aggregate, contact probability displays patterns of weekly cycles.

Whereas these cycles emerged both for self-initiated and received

contacts, they were most pronounced in face-to-face contacts,

much attenuated in telephone contacts, and barely apparent in

email contacts. Weekly cycles have also been found in recency

curves based on where and when people drive (Schooler,

unpublished data), suggesting that moving about in the world

may explain why weekly cycles are more pronounced for face-to-

face contact than for the other types of contact media. Overall,

caution is thus warranted in generalizing from one form of social

contact to another. For instance, the statistics of contacting friends

Figure 2. Regularities in social contact. (a) Probability of contact p
increases linearly with the frequency of past contacts f. (b) The odds of
contact are a power function of the number of days since the last
contact, appearing as a straight line on the log-log plot. (c) The power
relationship holds for both low- and high-frequency contacts. Shown
are bootstrapping standard errors calculated using the normal
approximation method. For the bootstrapping analysis, data from 40
participants were drawn (with replacement) from our sample and
aggregated across participants. We repeated this procedure 1,000

times. R2 values in (b) and (c) were computed on the log-transformed
data.
doi:10.1371/journal.pone.0086081.g002
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on Facebook need not reflect the statistics of face-to-face contact

with friends.

Our findings have a number of methodological and conceptual

implications for (a) the use of email contact as a proxy for social

contact more generally, (b) models of attitude formation, (c)

models of social transmission, (d) models of the evolution of

cooperation, and (e) the rational analysis of memory. We next

describe each of these implications in turn.

Analyses of email communication have been critical for the

development and testing of recent models of social networks

[24,25]. Our finding that patterns of contacts via common contact

media, such as face-to-face contacts, parallel those found for email

indicates that the results of email-based analyses (e.g., concerning

the evolution of networks) may hold for social contact more

generally. As noted above, one exception is that weekly spikes of

Figure 3. Spaced and massed social contact. (a) An example for a participant’s pattern of social contacts with her network members across a
period of 100 days, focusing on the participant’s 15 network members with the highest contact probability. The distribution of contacts across time
varies among network members, some showing a spaced pattern and others showing a clumped or massed pattern. (b) The probability of contact p
(when f is held constant at 2) depends on both the number of days since the last contact and the spacing of the past contact. The data points for
days 3 through 28 are running averages over 5-day bins, including data from the two preceding and the two subsequent days (e.g., the running
average for day 3 was computed as the average over the days 1–5). Days 2 and 29 are running averages over 3-day bins, and days 1 and 30 are
moving windows over 1-day bins. Shown are bootstrapping standard errors (determined using the normal approximation method).
doi:10.1371/journal.pone.0086081.g003
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contact seem to be less pronounced in email than in face-to-face

contact.

Social contact provides an opportunity for social influence.

Importantly, models of attitude formation often include frequency

of contact as one key variable influencing how attitudes change.

For instance, according to Latané’s [7] social impact theory, the

social impact emanating from a network member is a function of

her persuasiveness and immediacy to the target person, with

immediacy often defined as probability of contact [26]. In a

computer simulation implementing social impact theory, Nowak et

al. examined the dynamics of attitude formation over time. They

represented a population of people as cells in a quadratic grid, and

probability of contact was operationalized as the distance between

the cells in this grid. Whereas in these analyses the distribution of

contact probability was superimposed by the distribution of

distances in the grid, our results give an indication of the shape

of the distribution in actual social networks. Moreover, our results

allow an implementation of contact probabilities that vary over

time in a realistic fashion, subject to the regularities we identified,

rather than having to assume fixed contact probabilities.

Social contact also provides an opportunity for transmission of

fads, rumors, and infections. Mathematical epidemiologists have

studied the speed and nature of the propagation of disease in a

social network [27,28] and found that network properties such as

clustering and degree distribution [29,30] and, more recently,

connection strength [13] strongly predict the resulting propagation

pattern. Our finding that the distribution of contact probability is

considerably skewed may lead to novel predictions in the study of

social transmission. For instance, whereas it is usually argued that

propagation in a network can be fast and wide due to the existence

of ‘‘weak,’’ random connections [3,31], our results indicate that

these connections in fact tend to be used very infrequently. As a

consequence, networks might prove to be rather robust against

viral spread, even when the proportion of random connections is

quite high.

Further, social contact provides an opportunity for cooperative

interactions, in which partners decide whether to help the other or

to be selfish [32]. Importantly, the probability of future contact,

p—or as Axelrod [33] dubbed it, the ‘‘shadow of the future’’—is a

key variable for the evolution of some strategies for cooperation.

For instance, take the tit-for-tat strategy (TFT; [34]), which starts

by cooperating, and then simply copies the partner’s previous

choice. TFT has been shown to outperform purely selfish behavior

as long as p.c/b, where c represents the cost of cooperating and b

represents the benefit from receiving the altruistic act [8,34]. With

a probability of contact as low as the median of 5.5% that we

Figure 4. Proportion of recorded contacts as a function of
contact medium and direction. Error bars represent standard errors
of the mean.
doi:10.1371/journal.pone.0086081.g004

Figure 5. Direction-of-contact effects on frequency and recency. For the frequency analysis (upper row), the data points for frequency 3
through 28 are running averages over five frequency level bins, including data from the two preceding and the two subsequent frequency levels. The
frequency levels 2 and 29 are running averages over three frequency level bins, and frequency levels 1 and 30 are moving windows over one
frequency level bin. Shown are bootstrapping standard errors (determined using the normal approximation method).
doi:10.1371/journal.pone.0086081.g005
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observed, the benefits of cooperation need to exceed the costs by a

ratio of at least 18:1 before TFT can evolve. (Specifically, solving

p.c/b with p = 0.05 yields 0.05.1/18.2). Though such high

benefit-to-cost ratios may hold in some cooperative situations, such

as food sharing or predator alarm calls, it is not clear how

frequently they occur in the real world.

Moreover, note that analyses of the necessary benefit-to-cost

ratio are based on the standard assumption in evolutionary game

theory that every player has an equal chance to play against other

players [35]. Our results clearly contradict this assumption. As

discussed in Pachur, Schooler, and Stevens [23], TFT (and, by

extension, other strategies that depend on repeated interactions)

might evolve very differently under more realistic circumstances.

Specifically, a potentially viable modification of TFT may attend

to the probability of future contact and implement TFT only with

partners likely to be encountered frequently [23]. This requires

tracking estimates of future contact. If these estimates involve

uncertainty, however, it remains possible that cooperation may still

evolve, even with low probability of future contact. This can occur

when costs of the error of defecting against a partner with high

probability of future encounter may outweigh costs of the error of

cooperating in a true one-shot game [36]. In addition, the

regression equation for frequency effects predicts a nonzero

probability of future contact after a single interaction in the last 30

days (this holds for window sizes up to 90 days; see Table A4). This

finding supports the notion that true one-shot interactions are rare

and that the shadow of the future remains pervasive [32]. In short,

given the central role of the probability of future contact for the

evolution of cooperation, insights into the distribution of contact

probability in actual social networks can have considerable

implications for the conditions under which cooperative strategies

emerge.

If the probability of future contact is an important determinant

of (cooperative) behavior, how could the cognitive system estimate

this probability? As proposed by Pachur et al. [23], one possibility

is to exploit activation in memory. The rational analysis of

memory [9] assumes that human memory makes information

available as a function of how likely it is to be relevant in the

current context. In ACT-R [37], which incorporates the rational

analysis of memory, the accessibility of a memory record is

determined by its activation. This activation, in turn, is a function

of the probability p that the record will be needed to achieve a

processing goal (‘‘need probability’’). In the analyses reported here,

the p of needing information about a person in one’s social

network represents the probability of encountering that person.

Given the link between past and future contact, current activation

may not only indicate whether a memory is immediately relevant,

but additionally predict future activation (i.e., the probability of

seeing a person again). Assuming that activation in memory

translates into higher familiarity, social heuristics might therefore

exploit the statistical structure of social contacts simply via a sense

of familiarity. In addition, an understanding of the mechanisms

underlying social memory is also relevant for decision making

beyond cooperation decisions [38]. After all, the mind often seems

to recruit information about the social environment to make

inferences about the world in general [39,40].

Conclusions

If our social world were structured in the way that traditional

models of social networks assume, our lives would appear most

odd. On any given day, we would be as likely to catch a cold from

our local butcher as from our children. These models put aside the

complexities of our social world: the daily routines of work and

leisure, the unexpected encounters with friends in the check-out

line, or the weekly poker game. Yet our analyses show that these

complexities conspire to yield remarkably simple and predictable

patterns of social contact that can support more realistic theorizing

about and simulation of our social world.

Figure 6. Contact-medium effects on frequency and recency. For the frequency analysis (upper row), the data points are binned as described
for Figure 5. Shown are bootstrapping standard errors (determined using the normal approximation method).
doi:10.1371/journal.pone.0086081.g006
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Supporting Information

Figure S1 Individual Fits of Exponential and Power
Functions on the Distribution of Contact Probability.
Both exponential and power functions were fitted to the individual

distributions of contact probability across the members of the

person’s social network. For each participant the distribution and

the best-fitting function is shown on a log-log scale. For 31 of the

40 participants, an exponential function (curved relationship)

yielded a better fit than a power function (linear relationship).

(TIF)

Figure S2 Frequency, Recency, and Spacing Effects on
Contact Probability for Window Sizes w = 10, 30, 50, 70,
and 90. In the recency analysis separating frequent and rare

contacts, frequent contacts were defined as those occurring on at

least one fifth of the days in the time window (that is, on $w/5

days); rare contacts were defined as those occurring less frequently

than that. R2 values in the second and third rows were computed

on the log-transformed data.

(TIF)

Figure S3 Frequency, Recency, and Spacing Effects on
Presence Probability for Window Sizes w = 10, 30, 50, 70,
and 90. Presence probability is defined as the probability that

there is at least one contact during days w+1 to 100. In the recency

analysis separating frequent and rare contacts, frequent contacts

were defined as those occurring on at least one fifth of the days in

the time window (that is, on $w/5 days); rare contacts were

defined as those occurring less frequently than that. R2 values in

the second and third rows were computed on the log-transformed

data. R2 values in the second and third rows were computed on the

log-transformed data.

(TIF)

File S1 Raw Data.
(ZIP)

Table S1 Regression functions for frequency and re-
cency effects when using window sizes 10, 30, 50, 70, and
90.
(DOCX)

Table S2 As a focus on the probability of contact on a
particular day (i.e., w+1) might be overly restrictive, we
also examined how the frequency and recency of contact
in the time window of size w relates to the probability of
another contact on at least one of the remaining days
(i.e., day w+1 to day 100), to which we refer to as
‘presence probability’. (For the effect of the spacing of

contacts on presence probability, see Figure S3).

(DOCX)

Table S3 Regression functions for frequency and re-
cency effects separately for self-initiated and received
contacts.
(DOCX)

Table S4 Regression functions for frequency and re-
cency effects on contact medium.
(DOCX)
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